Portsmouth Asset Management Program

City of Portsmouth

November 2025

Presentation Overview

What are Assets?
What is Asset Management?
Importance of Asset Management
Portsmouth's Asset Management Program
Next Steps

What are Assets?

An asset is a resource with economic value and the expectation that it will provide a future benefit.

Wastewater - Horizontal

- Gravity pipes
- Force mains (pipes)
- · Sewer manholes

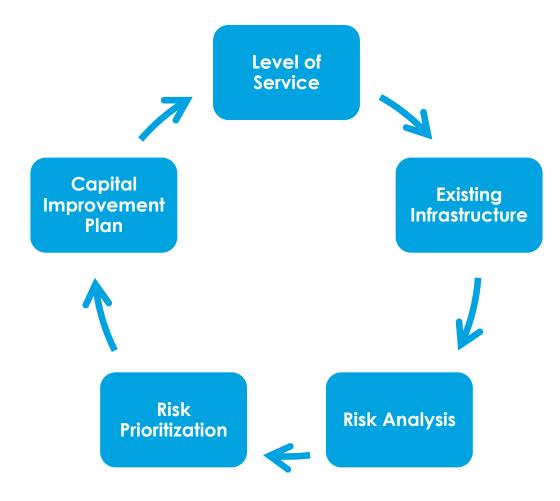
Wastewater - Vertical

- Pump station equipment
- Wastewater treatment facility equipment

Stormwater - Horizontal

- Gravity pipes
- · Drainage manholes
- Catch basins

What is Asset Management?


Asset Management is a systematic process of operating, maintaining, upgrading and disposing of assets cost-effectively while maintaining a level of service that is acceptable to the customers.

What is Asset Management?

Asset Management is a continuous process.

Importance of Asset Management

The City of Portsmouth owns and maintains thousands of assets with varying levels of complexity and replacement costs.

Pipe, manholes, catch basins, hydrants, etc.

Replacement Cost: \$100s to \$1,000s

Pump Stations

Replacement Cost: \$100Ks to \$1Ms

\$100Ms worth of assets

Treatment Facilities

Replacement Cost: \$1Ms to \$100Ms

Importance of Asset Management

Replacement costs can be 2-3x greater when done as reactive, emergency work due to factors like severity of damage, labor availability, shipping/freight, etc.

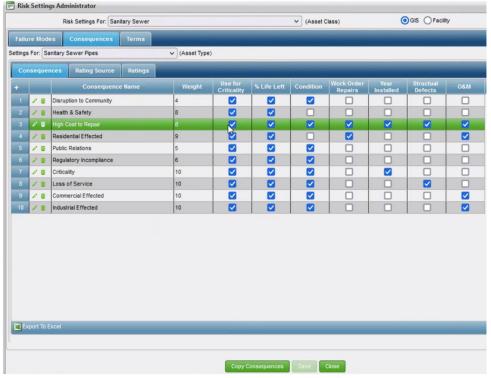
Maximize the benefits of invested dollars with preventative maintenance and capital improvement plans based on risk.

Level of Service

A Level of Service (LOS) goal defines how the utility owners, managers, and operators want the system to perform over the long term.

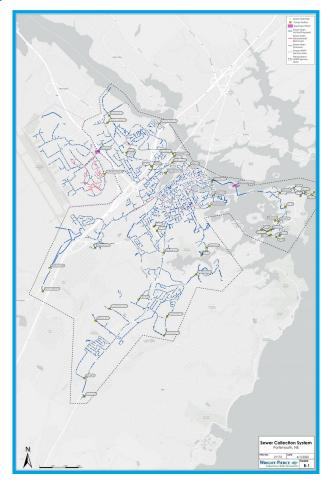
- The City created LOS goals for horizontal wastewater, vertical wastewater, and stormwater utilities.
- The LOS objectives were broken into six categories for each utility category:
 - Asset Preservation and Condition
 - Conservation, Compliance, and Enforcement
 - Health, Safety, and Security
 - Service Quality and Cost
 - Customer Service
 - Employee Development

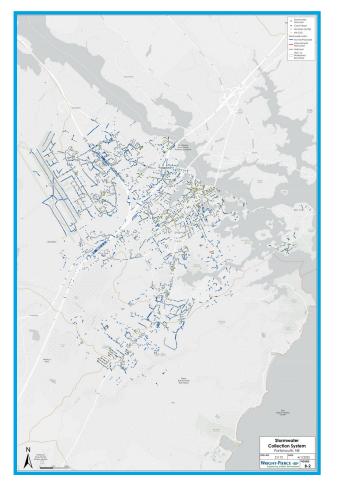
Existing Infrastructure: Summary


The City of Portsmouth owns and maintains both horizonal and vertical wastewater assets, as well as stormwater assets.

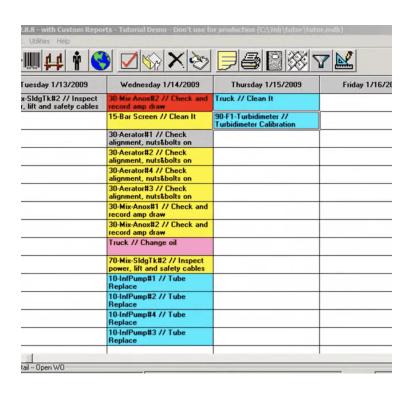
Wastewater Asset Type	Quantity
Gravity Pipe	500,000+ LF
Force Main Pipe	50,000+ LF
Manholes	2,636
Pump Station Equipment	285
Treatment Facility Equipment	328

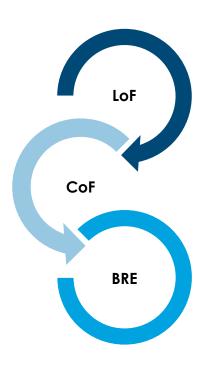
Stormwater Asset Type	Quantity
Drainage Pipe	420,000+ LF
Catch Basins	3,488
Drainage Manholes	1,039
Stormwater Treatment Units	74
Outfalls	205


Existing Infrastructure: VUEworks



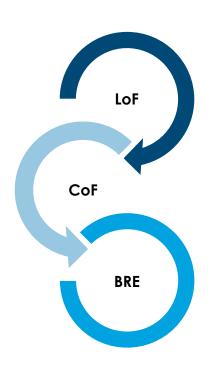
- Provides a common software for all departments to manage horizontal assets
- Centralizes work orders and service requests
- Simple graphical interface for navigating to and updating assets
- Export to Excel and Integration with GIS


Existing Infrastructure: GIS Integration


Existing Infrastructure: JobCal

- Provides a common software for all departments to manage vertical assets
- Centralizes work orders and service requests
- Simple graphical interface for navigating to and updating assets
- Export to Excel

Risk Analysis



- Likelihood of Failure (LoF)
 - 1 to 5
- LoF scores are generally based on:
 - Age
 - Material
 - Failure history

- Consequence of Failure (CoF)
 - _o 1 to 5
- Consequence of an asset failure can result in various impacts:
 - Social
 - Economic
 - Environmental

Risk Analysis: Business Risk Exposure

- Business Risk Exposure (BRE)
 - Combines the two measures of failure into one number that can be used to sort and rank assets
 - BRE = LoF x CoF

Risk Analysis: Wastewater Horizontal (Gravity Pipe & Manholes)

		Criteria	Criteria Weight
		Asset Life Consumed	25%
Likelihood of Failure		Asset Condition (NASSCO PACP)	50%
		Pipe Material	25%
		Public Health and Welfare	8.33%
	Social (25%)	Public Safety (population density per acre)	8.33%
Failure		Environmental Justice Socioeconomic Indicators	8.33%
E		Pipe Diameter	6.25%
of of	Economic (25%)	Depth	6.25%
nce	ECOHOITIIC (25%)	Traffic Distribution	6.25%
<u>n</u> e		Proximity to Railroads	6.25%
sed		Proximity to Wetlands, Surface Waters, and Tidal	
Consequence		Influence	16.66%
0	Environmental (50%)	Proximity to Groundwater Classification Areas	16.66%
		Proximity to Critical Plant/Animal Habitat	16.66%

Risk Analysis: Wastewater Horizontal (Force Main)

		Criteria	Criteria Weight
Likelihood of Failure		Asset Life Consumed	50%
		Pipe Material	50%
		Public Health and Welfare	8.33%
ഉ	Social (25%)	Public Safety (population density per acre)	8.33%
Failure		Environmental Justice Socioeconomic Indicators	8.33%
of F		Pipe Diameter	8.33%
	Economic (25%)	Traffic Distribution	8.33%
enc		Proximity to Railroads	8.33%
nb		Proximity to Wetlands, Surface Waters, and Tidal	
Consequence		Influence	16.66%
°C	Environmental (50%)	Proximity to Groundwater Classification Areas	16.66%
		Proximity to Critical Plant/Animal Habitat	16.66%

Risk Analysis: Wastewater Vertical (WWTFs & PSs)

	Criteria	Criteria Weight
	Asset Life Consumed	20%
	Condition	20%
Likelihood of Failure	Reliability	20%
	Performance	20%
	Maintainability	20%
	Redundancy	20%
	Permit Compliance	20%
	Environmental Impact	15%
Consequence of Failure	Financial Impact	15%
	Loss of Service	10%
	Safety Impact	10%
	Agency's Image	10%

Risk Analysis: Stormwater Horizontal (Gravity Pipe, Catch Basins, &

Manholes)

			Criteria
		Criteria	Weight
		Asset Life Consumed	20%
		Asset Condition (NASSCO PACP)	20%
Likelihood of Failure		Pipe Material	20%
		Flood Zone	20%
		Proximity to Suspected Septic System	10%
		Proximity to Sanitary Sewers	10%
		Public Health and Welfare	15%
Failure	Social (45%)	Public Safety (population density per acre)	15%
		Environmental Justice Socioeconomic Indicators	15%
e of		Pipe Diameter	11.25%
enc	Foomersia (4F0/)	Depth	11.25%
dne	Economic (45%)	Traffic Distribution	11.25%
Consequence		Proximity to Railroads	11.25%
Col	Environmental (10%)	Proximity to Wetlands, Surface Waters, and Tidal	
	Environmental (10%)	Influence	10%

Risk Prioritization

Group	Strategy
A	Critical Repair or Replacement
В	Priority Repair or Replacement
С	Priority Monitoring
D	Opportunistic Repair or Replacement
E	Monitor

			Conse	equence of Failure		
		1	2	3	4	5
	5	D	С	В	Α	A
ilure	4	D	С	В	В	Α
Likelihood of Failure	3	D	С	С	В	В
Likeli	2	E	D	С	С	С
	1	E	E	D	D	D

Plotting the likelihood of failure scores against the consequence of failure scores for each asset type provides a visual means of reviewing the BRE scores.

Risk Prioritization Example

Example Asset: Gravity Sewer Pipe (Asset ID: 1660)

Criteria	Weight	Asset Info	Score	LoF
Asset Life Consumed	25%	Installed in 1983, Expected life of 100 years	2	0.50
Asset Condition	50%	Unknown	5	2.50
Pipe Material	25%	PVC	1	0.25

Likelihood of Failure

Asset Life Consumed

= (Current Year – Install Year)/100 * 5

= (2023-1983)/100 * 5 = 2

LoF Score = 0.5 + 2.5 + 0.25 = 3.25

Rounded LoF Score (to nearest whole number) = 3

Risk Prioritization Example

Example Asset: Gravity Sewer Pipe (Asset ID: 1660)

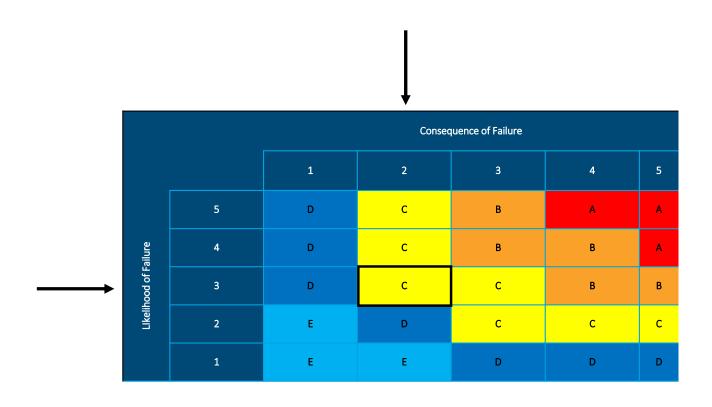
Criteria	Weight	Asset Info	Score	СоҒ
Public Health and Welfare (proximity to critical districts/facilities)	8.33%	< 200 ft ¹	4	0.3332
Public Safety (population density per acre)	8.33%	91-120	4	0.3332
Environmental Justice Socioeconomic Indicators	8.33%	60-79 th percentile	4	0.3332
Pipe Diameter	6.25%	< 8 inch	1	0.0625
Depth	6.25%	< 10 ft	1	0.0625
Traffic Distribution	6.25%	Local	2	0.125
Proximity to Railroads	6.25%	> 50 ft	1	0.0625
Proximity to Wetlands, Surface Waters, and Tidal Influence	16.66%	< 25 ft	5	0.833
Proximity to Groundwater Classification Areas	16.66%	> 250 ft	1	0.1666
Proximity to Critical Plant/Animal Habitat	16.66%	> 250 ft	1	0.1666

Notes:

Consequence of Failure

CoF Score

= 0.3332 + 0.3332 + 0.3332 + 0.0625 + 0.0625 + 0.125 + 0.0625 + 0.833 + 0.1666 + 0.1666 = 2.4783

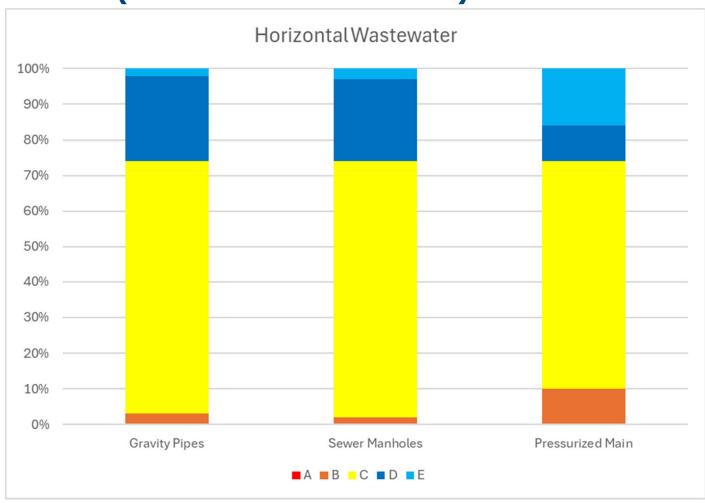

Rounded CoF Score (to nearest whole number) = 2

^{1.} Within 200 feet of commercial district, mixed-use commercial area, civic district, municipal area, or character district

Risk Prioritization Example

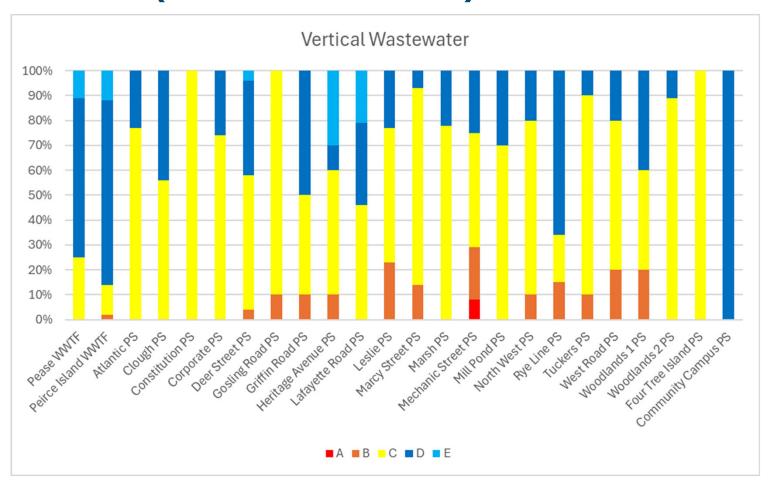
Example Asset: Gravity Sewer Pipe (Asset ID: 1660)

Rounded LoF Score = 3

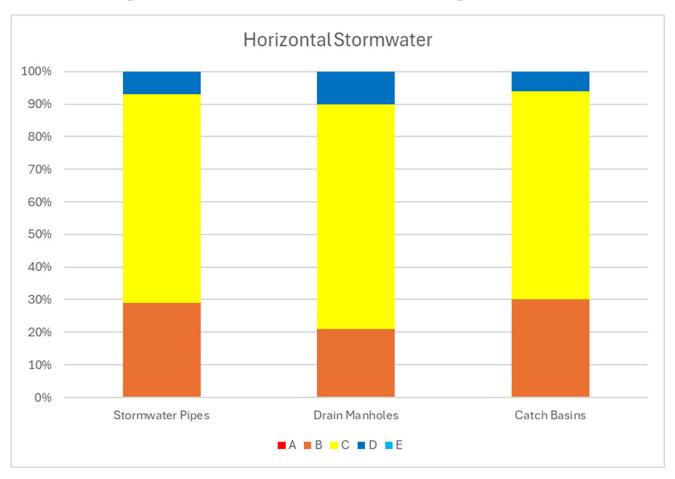

Rounded CoF Score = 2

BRE Score = 6 = C

Risk Prioritization Results (Horizontal Wastewater)


Group	Strategy
Α	Critical Repair or Replacement
В	Priority Repair or Replacement
С	Priority Monitoring
D	Opportunistic Repair or Replacement
E	Monitor

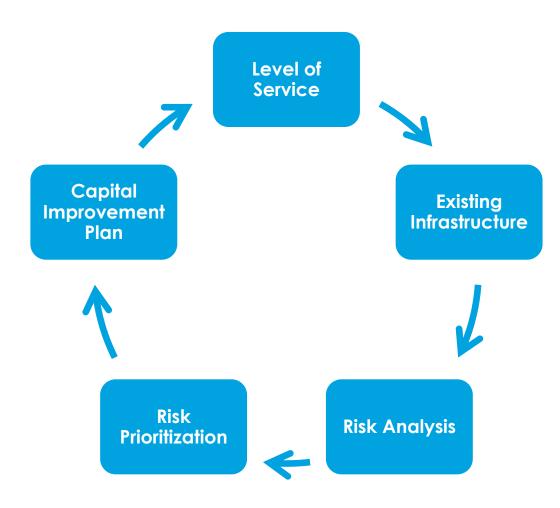
Risk Prioritization Results (Vertical Wastewater)


Group	Strategy
Α	Critical Repair or Replacement
В	Priority Repair or Replacement
С	Priority Monitoring
D	Opportunistic Repair or Replacement
E	Monitor

Risk Prioritization Results (Horizontal Stormwater)

Group	Strategy
A	Critical Repair or Replacement
В	Priority Repair or Replacement
С	Priority Monitoring
D	Opportunistic Repair or Replacement
E	Monitor

Next Steps


Integration into Existing Workflow:

- Continue condition inspections of assets and update asset information as projects are completed.
- □ Provide recurring training to staff members who will be maintaining data sets and coordinating with Excel, GIS, CCTV, and management softwares.
- Perform bi-annual audits of data sets.

Next Steps

The Asset Management Program will continue to be an important decisionmaking tool for the City to use indefinitely.

THANK YOU

